

UNEDA Stakeholder Multi-criteria

Layer Interface Specification

Universal Engine for Decision Analysis

Version 7.21

This is the API specification for the SML (Stakeholder Multi-criteria Layer)

functional package.

SML is a layer on top of the UNEDA DTL/TDL package, hiding as much of the

complexity as possible while at the same time introducing the concept of

stakeholders that can be evaluated jointly (weighted or unweighted) or

separately. The UNEDA SML API calls are kept much simpler but as similar to

DTL as possible to facilitate some limited interoperability. A number of SML

calls are extensions to DTL.

The UNEDA software is licensed under Creative Commons CC BY 4.0. It

is provided "as is", without warranty of any kind, express or implied.

Reuse and modifications are encouraged, with proper attribution.

The SML commands are divided into eight groups: System, Structure, Weights,

Probabilities, Values, Evaluation, Miscellaneous, and Error Handling.

NOTE: The return codes listed at each function call are the most common ones.

For a complete set of return codes, refer to the section on error handling.

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 2 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

CONTENTS

Data Types ... 5

Data Structures .. 5

Indexing ... 5

System Commands .. 6

Start SML layer .. 6

Stop SML layer ... 6

Abort command .. 6

Structure Commands ... 7

Tree structure ... 7

Create new frame ... 7

Create new criterion .. 10

Delete a criterion .. 10

Check frame type .. 10

Check criterion ... 11

Dispose of frame .. 11

Load frame .. 11

Close frame ... 11

File Commands ... 12

Read frame from file .. 12

Write frame to file ... 12

Weight Commands ... 12

Set weight base ... 12

Get weight hull ... 13

Probability Commands .. 13

Set probability base .. 13

Get probability hull .. 13

Value Commands .. 14

Set value base .. 14

Get value hull .. 14

Evaluation Commands ... 15

Set multi-criteria scale .. 15

Copy multi-criteria scale ... 15

Check scale values .. 16

Evaluate frame .. 16

Evaluate CDF .. 17

Evaluate all criteria ... 17

Evaluate all criteria at first level 17

Consequence influence ... 18

Compare alternatives .. 18

Mass delta between alternatives 19

Rank alternatives ... 19

Daisy chain ... 20

Pie chart ... 20

Remaining mass at result level .. 20

Support level mass .. 22

Weight tornado .. 22

Probability tornado ... 22

Criteria probability tornado .. 23

Value tornado ... 23

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 3 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

Criteria value tornado .. 24

Miscellaneous Commands .. 24

Library release version ... 24

Number of weights ... 25

Number of criteria .. 25

Number of alternatives .. 25

Total number of consequences .. 25

Number of consequences .. 26

Total number of nodes ... 26

Number of nodes ... 26

Criterion index number .. 26

Stakeholder node check .. 27

Error Handling .. 27

Get error text .. 27

Check error code .. 27

Check user-caused error code .. 28

SML error codes ... 28

SML error numbers ... 32

TCL error codes ... 32

TCL error numbers ... 34

Mapping of SML return codes ... 34

Call sequence trace (log file) .. 35

API function acronyms ... 35

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 4 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

RELEASE HISTORY

Ver. Date Main reasons

---- ------ ------------

1.22 220520 SML introduced

1.23 220802 VBA Excel support

1.24 221010 New SML calls

1.26 230325 Error stress test

1.27 230606 New SML CAR calls

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 5 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

DATA TYPES

There are a number of predefined data types in the SML package. These are

used for communication between the user layer and SML. Most are based either

on int or on double.

typedef double a_vector[MAX_ALTS+1];

typedef a_vector ar_matrix[MAX_ALTS+1];

typedef int ai_vector[MAX_ALTS+1];

typedef ai_vector ai_matrix[MAX_ALTS+1];

typedef double h_vector[MAX_NOPA+1];

typedef h_vector h_matrix[MAX_ALTS+1];

typedef int o_matrix[MAX_ALTS+1][MAX_COPA+1];

typedef double e_matrix[MAX_RESULT+1][MAX_RESULTSTEPS];

typedef int t_row[MAX_NOPA+1];

typedef t_row t_matrix[MAX_ALTS+1];

typedef double ar_col[MAX_ALTS+1];

typedef double cr_col[MAX_CRIT+1];

typedef int ai_col[MAX_ALTS+1];

DATA STRUCTURES

The user statements are of two separate types, one for weight statements

(user_w_stmt_rec) and the other for probability and value statements

(user_stmt_rec).

struct user_w_stmt_rec {

 int n_terms;

 int crit[MAX_TERMS+1];

 int sign[MAX_TERMS+1];

 double lobo;

 double upbo;

 };

struct user_stmt_rec {

 int n_terms;

 int alt[MAX_TERMS+1];

 int cons[MAX_TERMS+1];

 int sign[MAX_TERMS+1];

 double lobo;

 double upbo;

 };

INDEXING

There are four separate ways of indexing a node or consequence, using either

alternative and node number or a node sequence number and using either a to-

tal numbering (including intermediate nodes) or a final consequence numbering

(excluding intermediate nodes). The numbering is depth-first per alternative

in the tree. These four modes (plus two weight modes) are mapped below, and

for each command using indexing, the indexing mode is indicated.

Indexing type Alt. + node Node sequence Weight

Total numbering A1 B1 C1

Final numbering A2 B2 C2

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 6 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

SYSTEM COMMANDS

Start SML layer

Call syntax: SML_init(mode)

Call syntax: SML_init2(mode)

Mode: 0 = V-base source is a human (both calls)

 1 = V-base source is a machine (only init2)

 +2 = stress test of error handling

Return information:

OK -

ERROR – state error

 frame in use

Call semantics: Perform initialisation of SML, CAR, DTL, and TCL resources

and start the SML layer. This must be the first call to SML.

Stop SML layer

Call syntax: SML_exit()

Return information:

OK - number of entries written to trace log

ERROR – state error

 frame in use

 memory leak

Call semantics: Release resources in SML, CAR, DTL, and TCL. This should be

the last call to SML. Check trace log immediately if positive return code.

Abort command

Two versions are available, one for threads or processes sharing addressing

space (typically Java callers), the other for interrupt-driven inter-process

communication (typically C callers).

Call syntax: SML_abort()

Return information:

OK - user abort queued

Call semantics: Must be called by a thread or process sharing address space

with the rest of SML. The user request for abort is registered in SML. SML

looks for the nearest safe point to stop the calculation. If little remains

of the calculation, it will run to the end with the ordinary return code and

the call results are valid. If some more remains of the calculation, it will

be aborted with the SML_USER_ABORT return code and the call results are then

invalid.

Call syntax: send SIGINT signal to the SML process

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 7 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

Return information:

OK - user abort queued

Call semantics: A mechanism for interrupt-driven inter-process communication.

The master process sends an interrupt to the slave SML process. The user re-

quest for abort is registered in SML. SML looks for the nearest safe point to

stop the calculation. If little remains of the calculation, it will run to

the end with the ordinary return code and the call results are valid. If some

more remains of the calculation, it will be aborted with the SML_USER_ABORT

return code and the call results are invalid.

STRUCTURE COMMANDS

Tree structure

Each alternative has its own tree for each criterion. The tree starts with an

implicit decision node as node 0 (the root node). The decision tree is

expressed as a vector of tree nodes for each alternative. A node is defined

as follows:

typedef struct tt_node {

 char type;

 int next;

 int down;

 } ttnode;

‘type’ is the node type. Possible types are:

C Consequence node

D Decision node

E Event node

‘next’ points to the next node at the same level, and ‘down’ points to the

first child of the node (only if the node is an intermediate node of type D

or E). The numbering is depth-first. The value zero indicates a null pointer.

Trees are constructed as node vectors, one for each alternative.

typedef ttnode ta_tree[MAX_COPA+1];

typedef ta_tree tt_tree[MAX_ALTS+1];

Create new frame

There are five types of frames, three deterministic (1-3) and two

probabilistic (4-5):

1) Flat DM-frame with criteria weights, values, and a flat structure (one
level, no tree).

2) Tree DM-frame with criteria weights, values, and a weight tree.
3) Tree SM-frame with stakeholders, values, criteria weights, and a weight

tree for stakeholders and criteria.

4) Flat PM-frame with probabilities, values, criteria weights, and a flat
criteria structure. All criteria have their own event frames.

5) Tree PM-frame with probabilities, values, criteria weights, and a criteria
tree. All criteria have their own event frames.

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 8 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

The deterministic types are of two kinds. DM-frames are multi-criteria frames

but without event trees, i.e. each criterion has exactly one consequence for

each alternative. SM-frames are multi-stakeholder DM-frames, where each

stakeholder has a unique set of criteria weights. The probabilistic types

consist of a PM-frame containing the multi-criteria weight structure (tree or

flat) and slots for holding criteria frames in the form of sub-frames, all

handled as a single PM-frame. The sub-frames are independent and possible to

evaluate separately in the PM-frame slots. If a slot is unoccupied, a stand-

in evaluation of the slot is done for PM-frame evaluations. The stand-in

evaluation corresponds to an empty sub-frame.

Call syntax (1): SML_new_DM_flat_frame(int ufnbr, int n_crit, int n_alts)

Return information:

OK -

ERROR - input error

 frame unknown

 frame exists

 too many criteria

 too many alternatives

Call semantics: Creates a new deterministic DM-frame with ‘n_crit’ criteria

and ‘n_alts’ alternatives as specified in the call. Deterministic means that

each alternative under each criterion has only one consequence, i.e. no event

tree. The frame receives the frame number ‘ufnbr’. A frame cannot have less

than two alternatives.

Call syntax (2): SML_new_DM_tree_frame(int ufnbr, int n_alts, int n_wtnodes,

ta_tree wtree)

Return information:

OK -

ERROR - input error

 tree error

 frame unknown

 frame exists

 too many criteria

 too many alternatives

Call semantics: Creates a new deterministic DM-tree with as many criteria as

there are end nodes in the weight tree as specified in the call, and ‘n_alts’

alternatives. The weight tree (having ‘n_wtnodes’ nodes) is supplied in the

call and deterministic stubs are created automatically for each criterion.

Deterministic means that each alternative under each criterion has only one

consequence, i.e. no event tree. The frame receives the frame number ‘ufnbr’.

A frame cannot have less than two alternatives.

Call syntax (3): SML_new_SM_tree_frame(int ufnbr, int type, int n_alts, int

n_sh, int n_nodes, ta_tree wt_tree)

Type: 1 copy stakeholder 1 consequences (same values for all sh)

 2 duplicate the stakeholder consequences (different values)

Return information:

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 9 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

OK -

ERROR - input error

 tree error

 frame unknown

 frame exists

 too many stakeholders

 too many criteria

 too many alternatives

Call semantics: Creates a new deterministic combined stakeholder-criteria

weight tree (having ‘n_wtnodes’ nodes) with as many stakeholders as specified

in ‘n_sh’ and as many criteria as there are end nodes in the weight tree for

a single stakeholder, and ‘n_alts’ alternatives. The weight tree is supplied

in the call and deterministic stubs are created automatically for each

stakeholder and criterion. Deterministic means that each alternative under

each criterion has only one consequence, i.e. no event tree. The frame

receives the frame number ‘ufnbr’. A frame cannot have less than two

alternatives. NOTE1: The caller supplies the combined stakeholder-criteria

tree in the call. It is up to the caller to supply a stakeholder hierarchy in

which the lowest level contains the criteria (i.e. the frame has many

stakeholder levels but only one criterion level) since this is a mostly

stakeholder-focused function. NOTE2: In any data input or evaluation call

involving stakeholders, the parameter ‘crit’ in calls below should be

replaced by ‘sc(sh,crit)’ where sc is a macro taking two parameters: ‘sh’ is

the stakeholder number and ‘crit’ is the criterion number within the

stakeholder. This way, criteria within stakeholders are addressed using the

same calls as for single-stakeholder frames.

Call syntax (4): SML_new_PM_flat_frame(int ufnbr, int n_crit, int n_alts)

Return information:

OK -

ERROR - input error

 tree error

 frame unknown

 frame exists

 too many criteria

 too many alternatives

Call semantics: Creates a new probabilistic multi-criteria frame with

‘n_crit’ criteria and ‘n_alts’ alternatives as specified in the call. The

frame receives the frame number ‘ufnbr’. A frame cannot have less than two

alternatives. The frame is not loaded and can be filled with data prior to

loading.

Call syntax (5): SML_new_PM_tree_frame(int ufnbr, int n_alts, int n_wtnodes,

ta_tree wtree)

Return information:

OK -

ERROR - input error

 tree error

 frame unknown

 frame exists

 too many criteria

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 10 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

 too many alternatives

Call semantics: Creates a new probabilistic multi-criteria tree frame with as

many criteria as there are end nodes in the weight tree as specified in the

call. The weight tree is supplied in the call, but the trees for the criteria

are supplied in separate calls to SML_new_PM_crit_tree or SML_load_PM_crit. A

frame cannot have less than two alternatives. The weight tree must have at

least one node. ‘n_wtnodes’ does not include the root node. The frame is not

loaded and can be filled with data prior to loading. The weight tree is

specified for each alternative as node pointers ‘next’ and ‘down’ for each

node. ‘next’ points to the next node at the same level, and ‘down’ points to

the children of the node (only if the node is an intermediate node). The

value 0 indicates a null pointer.

Create new criterion

Call syntax: SML_new_PM_crit_tree(int crit, int n_nodes[], tt_tree xtree)

Return information:

OK -

ERROR - input error

 tree error

 criterion exists

 criterion unknown

 wrong frame type

 too many consequences

Call semantics: Creates a new criterion ‘crit’ with a tree as specified in

the call. The criterion is added to the loaded PM-frame. The tree is speci-

fied for each alternative as node pointers ‘next’ and ‘down’ for each node.

‘next’ points to the next node at the same level, and ‘down’ points to the

children of the node (only if the node is an intermediate node). The value

zero indicates a null pointer.

Delete a criterion

Call syntax: SML_delete_PM_crit(int crit)

Return information:

OK - frame number

ERROR - criterion unknown

 frame not loaded

 wrong frame type

Call semantics: Deletes the criterion in the slot ‘crit’ from the loaded PM-

frame. The criterion cannot subsequently be recovered into a PS-frame.

Check frame type

Call syntax: SML_frame_type(int ufnbr)

Return information:

OK - frame type: 1=SM1 (same values), 2=SM2 (diff values), 3=DM/PM

ERROR – frame unknown (ufnbr out of range)

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 11 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

Call semantics: Checks the type of the frame ‘ufnbr’. Supplying 0 as ‘ufnbr’

indicates the currently loaded frame. Returns the frame type if the frame

number is associated with a user frame in SML and 0 otherwise.

Check criterion

Call syntax: SML_PM_crit_exists(int crit, int *exists)

Return information:

OK -

ERROR – criterion unknown

 frame not loaded

 wrong frame type

Call semantics: Checks if the criterion exists. Returns TRUE in ‘exists’ if

the criterion slot number ‘crit’ is associated with a frame and FALSE

otherwise.

Dispose of frame

Call syntax: SML_dispose_frame(int ufnbr)

Return information:

OK -

ERROR – frame in use

 frame unknown

Call semantics: Dispose of resources belonging to frame ‘ufnbr’ and free the

position for a new frame. NOTE: Frames can only be disposed of when no frame

is open.

Load frame

Call syntax: SML_load_frame(int ufnbr)

Return information:

OK - for PM-frames: number of connected probability trees

ERROR – frame unknown

 frame corrupted

 frame in use

 inconsistent

Call semantics: Attempts to attach the frame ‘ufnbr’ to DTL. Bases are loaded

and checked for consistency. If any base is inconsistent, the frame will not

be attached (loaded).

Close frame

Call syntax: SML_unload_frame()

Return information:

OK -

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 12 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

ERROR - frame not loaded

Call semantics: Detach the frame from DTL/TCL and free the interface for new

frames. NOTE: In case of internal problems in DTL/TCL, the frame might be

detached without an explicit call to SML_unload_frame.

FILE COMMANDS

Read frame from file

Call syntax: SML_read_frame(int ufnbr, int type, int n_sh, char *fn, char

*folder)

Return information:

OK -

ERROR – file corrupt

 file/folder unknown

 frame exists

Call semantics: Reads the file ‘fn’ of type ‘type’ in folder ‘folder’ and

creates a user frame ‘ufnbr’ from the file. The file should have been

previously written by SML_write_frame and contain ‘n_sh’ stakeholders.

Write frame to file

Call syntax: SML_write_frame(char *fn, char *folder)

Return information:

OK -

ERROR – frame not loaded

 frame corrupt

Call semantics: Writes the currently loaded user frame to the file ‘fn’ in

folder ‘folder’.

WEIGHT COMMANDS

Weights can be criteria weights, stakeholder weights, or similar. All kinds

of weights in the weight hierarchy (tree) are treated in the same way within

the two node categories: intermediate nodes and final (real) nodes.

Set weight base

Call syntax: SML_set_W_base(h_vector lobox, h_vector mbox, h_vector upbox)

Call syntax: SML_set_W_base2(h_vector lobox, h_vector mbox, h_vector upbox,

int *inc_var)

Return information:

OK -

ERROR - wrong frame type

 frame not loaded

 inconsistent

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 13 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

Call semantics: Range statements for all criteria weights (in three vectors

‘lobox’, ‘mbox’, and ‘upbox’ indexed as [node]) are added to the weight base

at the same time. An inactive entry in ‘mbox’ is marked with -1.0. The base

is checked for consistency with respect to all new ranges. In case of

inconsistency, nothing is added to the base and for version 2 of the call the

offending variable number is returned in ‘inc_var’ if known. Indexing type:

C1. NOTE: ‘node’ is the node number in the weight tree.

Get weight hull

Call syntax: SML_get_W_hull(int global, h_vector lobo, h_vector mid, h_vector

upbo)

Return information:

OK -

ERROR - wrong frame type

 frame not loaded

 too many consequences

Call semantics: The global (‘global’=TRUE) or local (‘global’=FALSE) hull and

midpoint are returned in three vectors ‘lobo’, ‘mid’, and ‘upbo’ indexed as

[node]. Indexing type: C1. NOTE: ‘node’ is the node number in the weight

tree.

PROBABILITY COMMANDS

Set probability base

Call syntax: SML_set_P_base(int crit, h_matrix lobox, h_matrix mbox, h_matrix

upbox)

Call syntax: SML_set_P_base2(int crit, h_matrix lobox, h_matrix mbox,

h_matrix upbox, int *inc_var)

Return information:

OK -

ERROR - wrong frame type

 criterion unknown

 frame not loaded

 inconsistent

Call semantics: Range statements for all consequences (in three matrices

‘lobox’, ‘mbox’, and ‘upbox’ indexed as [alt][node]) are added to the

probability base of the criterion ‘crit’ at the same time. An inactive entry

in ‘mbox’ is marked -1.0. The base is checked for consistency with respect to

all new ranges. In case of inconsistency, nothing is added to the base and

for version 2 of the call the offending variable number is returned in

‘inc_var’ if known. Indexing type: A1. NOTE: ‘lobox’ and ‘upbox’ must contain

local probabilities.

Get probability hull

Call syntax: SML_get_P_hull(int crit, int global, h_matrix lobo, h_matrix

mid, h_matrix upbo)

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 14 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

Return information:

OK -

ERROR - wrong frame type

 criterion unknown

 frame not loaded

 too many consequences

Call semantics: The global (‘global’=1) or local (‘global’=0) hull and

midpoint of the criterion ‘crit’ are returned in three matrices ‘lobo’,

‘mid’, and ‘upbo’ indexed as [alt][node]. Indexing type: A1.

VALUE COMMANDS

Set value base

Call syntax: SML_set_V_base(int crit, int rev, int renorm, h_matrix lobox,

h_matrix mbox, h_matrix upbox)

Call syntax: SML_set_V_base2(int crit, int rev, int renorm, h_matrix lobox,

h_matrix mbox, h_matrix upbox, int *inc_var)

Rev: 0 = standard scale, higher values are preferred

 1 = reverse scale, lower values are preferred

Renorm: 0 = do not renormalise value base scale

 1 = renormalise value base scale

 2 = automatic, SML handles renormalisation

Return information:

OK -

ERROR - wrong frame type

 criterion unknown

 frame not loaded

 inconsistent

Call semantics: Range and mbox (most likely) statements for all consequences

(in three matrices ‘lobox’, ‘mbox’, and ‘upbox’ indexed as [alt][node]) are

added to the value base of the criterion ‘crit’ at the same time. In case of

inconsistency, nothing is added to the base and the scale is not changed. For

version 2 of the call the offending variable number is returned in ‘inc_var’.

Indexing type: A1. NOTE: Since values do not sum to one (or any other fixed

number), there is no option to omit the mbox entries.

Get value hull

Call syntax: SML_get_V_hull(int crit, h_matrix lobo, h_matrix mid, h_matrix

upbo)

Return information:

OK -

ERROR - frame not loaded

 criterion unknown

 too many consequences

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 15 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

Call semantics: The hull and the midpoint of the criterion ‘crit’ are

returned in three matrices ‘lobo’, ‘mid’, and ‘upbo’ indexed as [alt][node].

Indexing type: A1.

EVALUATION COMMANDS

For most evaluation commands, multi-criteria (PM/DM-frame) or multi-

stakeholder (SM-frame) evaluations are invoked by supplying crit=0. Partial

evaluations of the weight tree (stakeholder and/or criteria) can be invoked

by crit<0, where |crit| is the node number to start at. It must be an

intermediate node. For end nodes, use a positive crit argument.

Command Crit>0 Crit=0 Crit<0

SML_evaluate_frame x x x

SML_compare_alternatives x x x

SML_delta_mass x x x

SML_rank_alternatives x x x

SML_daisy_chain x x x

SML_pie_chart x x x

SML_get_W_tornado

SML_get_P_tornado x

SML_get_MCP_tornado x

SML_get_V_tornado x

SML_get_MCV_tornado x

SML_get_cons_influence x

SML_get_mass_range x x x

SML_get_mass_above x x x

SML_get_mass_below x x x

SML_get_support_mass x x x

SML_get_support_lower x x x

SML_get_support_upper x x x

Set multi-criteria scale

Call syntax: SML_set_scale(double v_min, double v_max)

Return information:

OK -

ERROR - wrong frame type

 frame not loaded

 input error

Call semantics: Sets the endpoints of the multi-criteria scale. To have lower

values being preferred (reverse scale), enter v_min larger than v_max. NOTE:

Only the MC scale is allowed to be set manually, otherwise the meaning of

value statements would change.

Copy multi-criteria scale

Call syntax: SML_copy_scale(int crit)

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 16 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

Return information:

OK -

ERROR - wrong frame type

 frame not loaded

 criterion unknown

Call semantics: Copies the endpoints of the scale of the criterion ‘crit’

specified in the call onto the multi-criteria scale. This call equalises the

two scales’ endpoints.

Check scale values

Call syntax: SML_check_user_values(int crit, int type, int count, ...)

Call syntax: SML_check_norm_values(int type, int count, ...)

Return information:

OK -

ERROR - input error

 frame not loaded

 criterion unknown

Call semantics: Check that the supplied list of ‘count’ values (max 10, in

separate arguments) are within the scale range. ‘type’ is absolute ABS_SCALE,

difference DIFF_SCALE, or distance DIST_SCALE. This is a variadic function

call which accepts a varying number of arguments (indicated by the ellipsis).

Evaluate frame

Call syntax: SML_evaluate_frame(int crit, int method, int Ai, int Aj,

e_matrix e_result)

Method subfield:

Eval: 0 DELTA

 4 GAMMA

 8 PSI

 12 DIGAMMA

Return information:

OK -

ERROR - input error

 criterion unknown

 alternative unknown

 wrong method

 frame not loaded

 output error

Call semantics: Evaluate the criterion ‘crit’ of the loaded frame. All

alternatives are evaluated using the Delta, Gamma, Psi, or Digamma rule. For

the requested alternative(s) ‘Ai’ (and ‘Aj’), the result is stored in

‘e_result’. Each result has the form of a matrix {min,mid,max} x {mass

steps}, with values from increasing mass. ‘Aj’ is relevant only for Delta and

Digamma evaluations. For Digamma, ‘Aj’ contains a bitmap with the selected

alternatives starting with alternative 1 in the lowest bit of the map.

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 17 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

Evaluate CDF

Call syntax: SML_evaluate_cdf(int crit, int Ai, c_vector level, c_vector cdf)

Return information:

OK -

ERROR - input error

 criterion unknown

 alternative unknown

 frame not loaded

 output error

Call semantics: Evaluate the criterion ‘crit’ of the loaded frame using the

Psi rule. For the requested alternative ‘Ai’, the EV level and cumulative

density function (CDF) are stored in ‘level’ and ‘cdf’ respectively.

Evaluate all criteria

Call syntax: SML_evaluate_mid(int Ai, int mode, cr_col o_result, ci_col

o_rank)

Evaluate the alternative ‘Ai’ of the loaded frame w.r.t. all criteria one at

a time.

Mode: 0 Ordering

 1 Ranking (olympic)

 +2 Output in percent of MC scale

 +4 Renormalisation

Return information:

OK -

ERROR - input error

 alternative unknown

 frame not loaded

 wrong frame type

Call semantics: An alternative is evaluated in each criterion by the Omega

rule (“part worth”). The result is stored in ‘o_result’ indexed with

criterion number and the rank or order in ‘o_rank’. ‘mode’ is 0 for ordering

(o_rank[i] contains the index of the criterion ranked in position i) and 1

for ranking (o_rank[i] contains the rank position for criterion i).

o_result[0] contains the full Omega value for alternative ‘Ai’ (coinciding

with mid for Psi evaluation). If ‘Ai’ is 0, an average of all alternatives is

returned.

Evaluate all criteria at first tree level

Call syntax: SML_evaluate_omega(int Ai, cr_col o_result)

Call syntax: SML_evaluate_omega1(int Ai, cr_col o_result, ci_col o_node)

Call syntax: SML_evaluate_omega2(int Ai, int mode, cr_col o_result, ci_col

o_node)

Evaluate the alternative ‘Ai’ of the loaded frame w.r.t. the total

contribution from each node at the first weight tree level.

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 18 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

Mode: 0 Output in absolute MC scale

 2 Output in percent of MC scale

 4 Renormalisation

Return information:

OK -

ERROR - input error

 alternative unknown

 frame not loaded

 wrong frame type

Call semantics: An alternative is evaluated in each node at the first weight

tree level by the Omega rule (“part worth”). The result is stored in

‘o_result’ indexed with node number in ‘o_node’. o_result[0] contains the

full Omega value for alternative ‘Ai’. If ‘Ai’ is 0, an average of all

alternatives is returned. NOTE: Only applicable to single stakeholder weight

trees.

Consequence influence

Call syntax: SML_get_cons_influence(int crit, int mode, h_matrix result)

Mode: 0 Local EV contribution

 1 Global WEV contribution

Return information:

OK -

ERROR - frame not loaded

 input error

 criterion unknown

Call semantics: The influence of the consequences of the criterion ‘crit’ is

returned in the matrix ‘result’ indexed as [alt][node]. ‘mode’ is 0 for a

local result (i.e. within the criterion) and 1 for a global result (i.e.

contribution from the criterion to the weighted expected value). For each

final consequence node, the value shows how much the mass point of this

particular consequence influences the (weighted) expected value. Indexing

type: A1. NOTE: ‘node’ is the node number in the weight tree.

Compare alternatives

Call syntax: SML_compare_alternatives(int crit, int method, double

belief_level, ar_col lo_value, ar_col up_value)

Method subfield:

Eval: 4 GAMMA

 8 PSI

Return information:

OK -

ERROR - frame not loaded

 input error

 criterion unknown

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 19 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

Call semantics: Compares alternatives based on ‘method’ for the criterion

‘crit’. The comparison is made using belief mass. The desired belief level in

the range [0,1] must reside in ‘belief_level’ when calling the function. The

result is a support range [lo_value[Ai],up_value[Ai]] for each alternative Ai

(from 1 to n_alts).

Mass delta between alternatives

Call syntax: SML_delta_mass(int crit, ar_matrix delta_mass, ai_col

delta_order)

Call syntax: SML_delta_mass2(int crit, int mode, ar_matrix delta_mass, ai_col

delta_order)

Mode: 0 no interpolation

 1 interpolation: no mass matrix row may decrease (default)

Return information:

OK -

ERROR - frame not loaded

 input error

 criterion unknown

Call semantics: Returns a matrix ‘delta_mass’ with the cdf mass of the deltas

(differences) in belief mass between each pair [Ai,Aj] of alternatives.

‘delta_order’ is the alternative numbers in ranking order.

Rank alternatives

Call syntax: SML_rank_alternatives(int crit, int mode, double

gamma_tolerance, double omega_tolerance, ai_col gamma_rank, ai_col

omega_rank, ar_col gamma_value, ar_col omega_value)

Call syntax: SML_rank_gamma(int crit, ai_col gamma_rank, ar_col gamma_value)

Call syntax: SML_rank_omega(int crit, ai_col omega_rank, ar_col omega_value)

Mode: 0 olympic ranking

 1 hard/strict ranking (default for SML_rank_gamma/omega)

 +2 tolerances are values (default: percent)

Return information:

OK - ok

 differing ranks

ERROR - frame not loaded

 input error

 criterion unknown

Call semantics: Obtains the ordinal and cardinal rankings (from 1 to n_alts)

of all alternatives based on (i) Omega values (mass points) and/or on (ii)

the Gamma evaluations for the criterion ‘crit’. The cardinal ranking vectors

that the ordinal rankings (range: [1..n]) are based on are returned. It

returns SML_DIFFERING_RANKS if the two ordinal ranking vectors are not

identical. The closeness tolerances must be in the range [0%,10%] (0% for

sharp ordinal ranking) and corresponding for values (‘mode’+2).

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 20 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

Daisy chain

Call syntax: SML_daisy_chain(int crit, ai_col daisy_rank, ar_col daisy_value)

Call syntax: SML_daisy_chain2(int crit, int mode, ai_col omega_rank, ar_col

daisy_value, ar_col omega_value)

Mode: 0 return absolute omega EV values

 1 return relative omega EV values (default)

Return information:

OK -

ERROR - frame not loaded

 input error

 criterion unknown

Call semantics: Obtains the ordinal and daisy chain (dominance-based)

rankings (from 1 to n_alts) of all alternatives based on (i) Omega values

(mass points) and on (ii) the pairwise dominance of the alternatives as

ranked by the Omega function.

Pie chart

Call syntax: SML_pie_chart(int crit, ar_col pie_value)

Call syntax: SML_pie_chart1(int crit, ar_col pie_value)

Call syntax: SML_pie_chart2(int crit, double moderation, ar_col pie_value)

Negative moderation modifies only the starting point (anchor) of the pie

chart. It controls how much of its mass the best alternative distributes

along the daisy chain. 0.0 means keep all (default), -1.0 is maximum effect.

Positive moderation modifies both the anchor but also the daisy chain as a

basis for the chart. Thus, it also controls how much of their mass the other

alternatives distribute along the daisy chain. 1.0 is maximum effect.

Return information:

OK -

ERROR - frame not loaded

 input error

 criterion unknown

Call semantics Obtains the rating of all alternatives based on the mass

distribution of Gamma evaluations for the criterion ‘crit’. The rating is

relative (proportional) intended for e.g. pie charts. The elements in the

rating sum up to 100%. The rating vector (range: [0,1]) is returned.

SML_pie_chart has no moderation (raw mode), SML_pie_chart1 has low moderation

while SML_pie_chart2 gives control over the moderation.

Remaining mass at result level

Call syntax: SML_get_mass_above(double lo_level, double *mass)

Call syntax: SML_get_mass_below(double up_level, double *mass)

Call syntax: SML_get_mass_range(double lo_level, double up_level, double

*mass)

Return information:

OK -

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 21 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

ERROR - output error

 input error

 criterion unknown

A note on belief mass functions

Let a,b,c be real numbers in [0,1]

Let s be the lower endpoint of the scale [0,1] (psi) or [-1,1] (delta, gamma)

Let d,e,p be real numbers (points) on the scale [s,1]

Let I(d,e) f(x)dx be the Lebesgue integral from d to e over f(x)

Let dens(x) be a belief density function with I(s,1) dens(x)dx = 1

In theory, the most natural would be a three-way belief function:

a = Belief in interval below point p = I(s,p) dens(x)dx

b = Belief in the point p itself = I(p,p) dens(x)dx

c = Belief in interval above point p = I(p,1) dens(x)dx

For normal density:

b = 0

a + c = 1

a + b + c = 1

For Dirac density:

b = 1

a + c = 0

a + b + c = 1

But the most efficient implementation is a two-way function:

a = Belief in interval at and below point p

c = Belief in interval at and above point p

For normal density:

a + c = 1

For Dirac density (not at scale endpoints):

a = c = 1/2

For Dirac density (at scale lower endpoint = s):

a = 0

c = 1

For Dirac density (at scale upper endpoint = 1):

a = 1

c = 0

The two-way implementation works perfectly for normal cases but requires special

attention for pointwise masses.

The underlying function does not know whether it is being called by a function

having s=-1 or s=0, so it will return the following:

For Dirac density (at Delta/Gamma/Digamma scale lower endpoint s=-1):

a = 0

c = 1

For Dirac density (at Psi scale lower endpoint s=0):

a = c = 1/2

Call semantics: Obtains the fraction [0,1] of the mass remaining above/below

a specific result level in the evaluation result of the latest evaluation (or

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 22 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

between the given levels in case of SML_get_mass_range. The fraction is

returned in ‘mass’. The call must be preceded by an evaluation. This can be

seen as the remaining mass above or below a specified result level (or both

for SML_get_mass_range) in a traditional evaluation. In that sense, it works

perpendicular to the other mass calls.

Support level mass

Call syntax: SML_get_support_mass(double belief_level, double *lobo, double *upbo)

Call syntax: SML_get_support_lower(double belief_level, double *lobo, double *upbo)

Call syntax: SML_get_support_upper(double belief_level, double *lobo, double *upbo)

Return information:

OK -

ERROR - output error

 input error

 frame not loaded

 criterion unknown

Call semantics: Obtains the interval [0,1] within which ‘belief_level’

fraction of the remaining mass resides in the evaluation result of the

criterion ‘crit’. ‘belief_level’ must be in the range [0.5,0.999]. The

calculations are the result of a B-normal evaluation. The interval is

returned as [lobo,upbo]. The call must be preceded by an evaluation.

Weight tornado

Call syntax: SML_get_W_tornado(h_matrix t_lobo, h_matrix t_upbo)

Call syntax: SML_get_W_tornado2(int mode, h_matrix t_lobo, h_matrix t_upbo)

Mode subfield:

Type: 0 Standard evaluation, explicit midpoint kept (default)

 1 Explicit midpoint removed before calculations

 +2 Belief mass-based instead of expected value-based

Return information:

OK -

ERROR - frame not loaded

 input error

 wrong frame type

Call semantics: The weight sensitivity tornado of all alternatives is

returned in two matrices (first call) or vectors (second call) ‘t_lobo’ and

‘t_upbo’. ‘mode’ 0 is with the explicit midpoint kept and 1 is without an

explicit midpoint. For each node, the [t_lobo,t_upbo] interval shows how much

the midpoint shifts when the respective weights are set to their minima and

maxima one at a time. Indexing type: A1. NOTE: ‘node’ is the node number in

the weight tree.

Probability tornado

Call syntax: SML_get_P_tornado(int crit, h_matrix t_lobo, h_matrix t_upbo)

Call syntax: SML_get_P_tornado2(int crit, int mode, h_matrix t_lobo, h_matrix

t_upbo)

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 23 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

Mode subfield:

Type: 0 Standard evaluation, explicit midpoint kept (default)

 1 Explicit midpoint removed before calculations

 +2 Belief mass-based instead of expected value-based

Return information:

OK -

ERROR - frame not loaded

 input error

 criterion unknown

Call semantics: The probability sensitivity tornado of the criterion ‘crit’

is returned in two matrices ‘t_lobo’ and ‘t_upbo’ indexed as [alt][node].

‘mode’ 0 is with the explicit midpoint kept and 1 is without an explicit

midpoint. Adding 2 to ‘mode’ yields belief mass-based evaluation instead of

expected value-based which takes some more CPU power. For each node, the

[t_lobo,t_upbo] interval shows how much the midpoint shifts when the

respective probabilities are set to their minima and maxima one at a time.

Indexing type: A1.

Criteria probability tornado

Call syntax: SML_get_MCP_tornado(int crit, h_matrix t_lobo, h_matrix t_upbo)

Call syntax: SML_get_MCP_tornado2(int crit, int mode, h_matrix t_lobo,

h_matrix t_upbo)

Mode subfield:

Type: 0 Standard evaluation, explicit midpoint kept (default)

 1 Explicit midpoint removed before calculations

 +2 Belief mass-based instead of expected value-based

Return information:

OK -

ERROR - frame not loaded

 input error

 wrong frame type

 criterion unknown

Call semantics: The criterion weighted probability tornado of the criterion

‘crit’ is returned in two matrices ‘t_lobo’ and ‘t_upbo’ indexed as

[alt][node]. ‘mode’ 0 is with the explicit midpoint kept and 1 is without an

explicit midpoint. Adding 2 to ‘mode’ yields belief mass-based evaluation

instead of expected value-based which takes some more CPU power. For each

final consequence node, the [t_lobo,t_upbo] interval shows how much the

midpoint shifts when the respective values are set to their minima and maxima

one at a time and how much this influences the total weighted expected value.

Indexing type: A1.

Value tornado

Call syntax: SML_get_V_tornado(int crit, h_matrix t_lobo, h_matrix t_upbo)

Call syntax: SML_get_V_tornado2(int crit, int mode, h_matrix t_lobo, h_matrix

t_upbo)

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 24 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

Mode subfield:

Type: 0 Standard evaluation, explicit midpoint kept (default)

 1 Explicit midpoint removed before calculations

 +2 Belief mass-based instead of expected value-based

Return information:

OK -

ERROR - frame not loaded

 input error

 criterion unknown

Call semantics: The value sensitivity tornado of the criterion ‘crit’ is

returned in two matrices ‘t_lobo’ and ‘t_upbo’ indexed as [alt][node]. ‘mode’

0 is with the explicit midpoint kept and 1 is without an explicit midpoint.

Adding 2 to ‘mode’ yields belief mass-based evaluation instead of expected

value-based which takes some more CPU power. For each final consequence node,

the [t_lobo,t_upbo] interval shows how much the midpoint shifts when the

respective values are set to their minima and maxima one at a time. Indexing

type: A1.

Criteria value tornado

Call syntax: SML_get_MCV_tornado(int crit, h_matrix t_lobo, h_matrix t_upbo)

Call syntax: SML_get_MCV_tornado2(int crit, int mode, h_matrix t_lobo,

h_matrix t_upbo)

Mode subfield:

Type: 0 Standard evaluation, explicit midpoint kept (default)

 1 Explicit midpoint removed before calculations

 +2 Belief mass-based instead of expected value-based

Return information:

OK -

ERROR - frame not loaded

 input error

 wrong frame type

 criterion unknown

Call semantics: The criterion weighted value tornado of the criterion ‘crit’

is returned in two matrices ‘t_lobo’ and ‘t_upbo’ indexed as [alt][node].

‘mode’ 0 is with the explicit midpoint kept and 1 is without an explicit

midpoint. Adding 2 to ‘mode’ yields belief mass-based evaluation instead of

expected value-based which takes some more CPU power. For each final

consequence node, the [t_lobo,t_upbo] interval shows how much the midpoint

shifts when the respective values are set to their minima and maxima one at a

time and how much this influences the total weighted expected value. Indexing

type: A1.

MISCELLANEOUS COMMANDS

Library release version

Call syntax: SML_get_release(string(relstrg))

Return information:

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 25 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

OK -

Call semantics: Obtains the release version of the underlying DTL package.

The format for the standard version is "M.F.T", where M=main, F=functional,

and T=technical version numbers. The user interface code must assure that M

and F match the application requirements. The standard and long versions both

uniquely identify the software library.

Number of weights

Call syntax: SML_nbr_of_weights()

Return information:

OK - number of weight nodes in the current frame

ERROR - frame not loaded

Call semantics: Returns the number of weight nodes in the currently loaded

frame. For a frame with several stakeholders, this includes all stakeholders.

Number of criteria

Call syntax: SML_nbr_of_crit()

Return information:

OK - number of criteria in the current frame

ERROR - frame not loaded

Call semantics: Returns the total number of criteria in the currently loaded

frame. For a frame with several stakeholders, this includes all stakeholders.

Number of alternatives

Call syntax: SML_nbr_of_alts()

Return information:

OK - number of alternatives in the current frame

ERROR - frame not loaded

Call semantics: Returns the number of alternatives in the currently loaded

frame.

Total number of consequences

Call syntax: SML_total_cons(int crit)

Return information:

OK - number of consequences in the specified alternative

ERROR - frame not loaded

 criterion unknown

Call semantics: Returns the total number of consequences in all alternatives

of the criterion ‘crit’ in the currently loaded frame. For ‘crit’=0, the

total number of consequences in the frame is returned. Indexing type: B2.

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 26 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

Number of consequences

Call syntax: SML_nbr_of_cons(int crit, int alt)

Return information:

OK - number of consequences in the specified alternative

ERROR - frame not loaded

 criterion unknown

 alternative unknown

Call semantics: Returns the number of consequences in the specified alterna-

tive of the criterion ‘crit’ in the currently loaded frame. Indexing type:

B2.

Total number of nodes

Call syntax: SML_total_nodes(int crit)

Return information:

OK - number of nodes in all alternatives in total

ERROR - frame not loaded

 criterion unknown

Call semantics: Returns the total number of nodes in all alternatives of the

criterion ‘crit’ in the currently loaded frame. For ‘crit’=0, the total

number of nodes in the frame is returned. Indexing type: B1.

Number of nodes

Call syntax: SML_nbr_of_nodes(int crit, int alt)

Return information:

OK - number of nodes in the specified alternative

ERROR - frame not loaded

 criterion unknown

 alternative unknown

Call semantics: Returns the number of nodes in the specified alternative of

the criterion ‘crit’ in the currently loaded frame. Indexing type: B1.

Criterion index number

Call syntax: SML_crit_nbr(int sh, int crit)

Return information:

OK - index number in weight tree

ERROR – 0 (input error)

Call semantics: Returns the index number in the weight tree for criterion

‘crit’ under stakeholder ‘sh’ (or 0 if input error). Indexing type: C2.

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 27 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

Stakeholder node check

Call syntax: SML_is_stakeholder(int node)

Return information:

OK - TRUE/FALSE

ERROR - frame not loaded

 wrong frame type

 input error

Call semantics: Returns TRUE if the index in ‘node’ is a stakeholder node and

FALSE if it is a criterion node. Indexing type: C1.

ERROR HANDLING

All SML calls (except SML_get_errtxt) return a number of type rcode which

serves as an information carrier and error code at the same time. In the

event of an error, a negative number is returned. The caller should interpret

the error code and take action accordingly. The codes are found below.

Get error text

Call syntax: char *SML_get_errtxt(int drc)

Call syntax: char *SML_get_errtxt2(int drc, int style)

Return information:

OK - pointer to error text

ERROR – pointer to text “- NO TEXT -”

Call semantics: Returns the text string that corresponds to the supplied SML

error number in C-style (null-terminated, ‘style’=0) or Pascal shortstring-

style (length-preceded, ‘style’=1) format (automatic for SML_get_errtxt). If

the number is out of range, the error text “- NO TEXT -” is returned.

Check error code

Call syntax: SML_error(int drc)

Return information:

0 – the return code ‘drc’ contains only information

1 - the return code ‘drc’ contains an error

Call semantics: Returns the severity of the return code ‘drc’ supplied. The

‘drc’ code should originate from a previous SML call. The function takes care

of both SML and DTL/TCL error codes.

Call syntax: SML_error2(int drc)

Return information:

0 – the return code ‘drc’ contains information, output valid

1 – the return code ‘drc’ contains information, output invalid

2 - the return code ‘drc’ contains an error

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 28 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

Call semantics: Returns the severity of the return code ‘drc’ supplied. The

‘drc’ code should originate from a previous SML call. The function takes care

of both SML and DTL/TCL error codes and categorises them as severe (2) or not

(1).

Check user-caused error code

Call syntax: SML_u_error(int drc)

Return information:

0 – the return code ‘drc’ contains information or user mistake

1 - the return code ‘drc’ contains an error not caused by a user

Call semantics: Returns the severity of the return code ‘drc’ supplied. The

‘drc’ code should originate from a previous SML call. The function takes care

of both SML and DTL/TCL error codes.

Call syntax: SML_u_error2(int drc)

Return information:

0 – the return code ‘drc’ contains information, output valid

1 – the return code ‘drc’ contains information or user mistake, output invalid

2 - the return code ‘drc’ contains an error

Call semantics: Returns the severity of the return code ‘drc’ supplied. The

‘drc’ code should originate from a previous SML call. The function takes care

of both SML and DTL/TCL error codes and categorises them as severe (2) or not

(1).

Inline error code check

Call syntax: scall(SML_function(par1,par2,...))

Call syntax: ucall(SML_function(par1,par2,...))

Return information:

< -2: DTL return code = real error

 -2: no result but not real error

 -1: inconsistent user input (only ucall)

 0: ok

 1: ok + additional state information

 > 1: ok + additional numeric information

Call semantics: Generalised error code interpreter and handler. Fetches the

appropriate error code and combines it with the return code into one single

error number.

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 29 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

SML error codes

SML_KERNEL_ERROR

The error occurred in the underlying TCL calculation kernel layer. This value

is not returned alone but instead added to the TCL error code.

SML_INPUT_ERROR

One of the input parameters contained invalid information.

SML_TREE_ERROR

The tree structure supplied is invalid or the tree description contained

invalid information.

SML_OUTPUT_ERROR

The requested output from the SML function could not be generated. This

usually refers to a request for impossible evaluation data.

SML_FRAME_EXISTS

The frame number already exists. No more frames can have the same number.

SML_FRAME_UNKNOWN

The requested frame number does not exist. Either it is not created, or the

number is out of range.

SML_FRAME_IN_USE

An attempt to delete or in another way eliminate a frame that is currently

attached (loaded).

SML_FRAME_NOT_LOADED

An attempt to use frame commands while no frame is loaded.

SML_FRAME_CORRUPT

Internal error. The frame has been rendered corrupt, either by modifications

outside of TCL or because of an internal error in TCL.

SML_WRONG_FRAME_TYPE

An attempt to issue a PS/PM-only command to a DM frame or vice versa.

SML_WRONG_STATEMENT_TYPE

The user statement passed in the call is inappropriate for the type of frame

currently loaded.

SML_CONS_OVERFLOW

Too many consequences in the problem for SML to handle. This should be pro-

hibited in the user interface at an earlier point (use MAX_CONS).

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 30 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

SML_CRIT_OVERFLOW

Too many criteria in the problem for SML to handle. This should be prohibited

in the user interface at an earlier point (use MAX_CRIT).

SML_ALT_OVERFLOW

Too many alternatives in the problem for SML to handle. This should be pro-

hibited in the user interface at an earlier point (use MAX_ALT).

SML_NODE_OVERFLOW

Too many nodes in the tree for SML to handle. This should be prohibited in

the user interface at an earlier point (use MAX_NODES).

SML_DIFFERING_RANKS

The rankings obtained with Omega values (midpoint) and Gamma values are not

the same. The results are correct but not in accordance with each other.

SML_SYS_CORRUPT

The internal data structures of SML or DTL are misaligned.

SML_STATE_ERROR

A call to SML is made when SML is in the wrong initialisation state.

SML_CRIT_UNKNOWN

The requested criterion does not exist. The criterion number is within the

valid range, but no criterion has been installed at this position.

SML_CRIT_EXISTS

The requested criterion does already exist. A criterion has been installed at

this position.

SML_ALT_UNKNOWN

The alternative does not exist.

SML_ALT_MISMATCH

The added criterion does not have the same number of alternatives as the

frame.

SML_NAME_MISSING

The frame has not been given a name pointer.

SML_NAME_TOO_LONG

The frame name has too many characters.

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 31 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

SML_NAME_EXISTS

The frame name exists already in another frame.

SML_STMT_ERROR

Syntax error in the input statement.

SML_WRONG_METHOD

The method field contains an illegal value.

SML_WRONG_TOLERANCE

The tolerance in the call is not within range.

SML_CRIT_MISSING

A criterion is missing in a PM-frame and stand-in evaluation is not allowed.

SML_TOO_FEW_ALTS

Too few alternatives were specified in the call.

SML_INCONSISTENT

The supplied statement is inconsistent.

SML_NOT_ALLOWED

The call is not allowed at this time.

SML_FILE_UNKNOWN

The supplied filename is not a file in the current folder.

SML_WEAK_MASS_DISTR

Due to skew in the belief mass, the distributions are compressed.

SML_USER_ABORT

The call was prematurely aborted by the user. No call results are available.

SML_BUSY

Two threads have called SML in parallel. Since the code is not re-entrant,

his thread has to wait for the first to finish. Guard against mix-up of

threads in the calling application.

SML_LOGFILE_ERROR

Unable to open or write to the call sequence trace log file.

SML_MEMORY_LEAK

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 32 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

At reconciliation time, allocated memory still remains in use even though it

should all be freed. Internal error in SML.

SML_BUFFER_OVERRUN

The string supplied was too short for the data returned.

SML error numbers

SML_KERNEL_ERROR -100

SML_INPUT_ERROR -101

SML_TREE_ERROR -102

SML_OUTPUT_ERROR -103

SML_FRAME_EXISTS -104

SML_FRAME_UNKNOWN -105

SML_FRAME_IN_USE -106

SML_FRAME_NOT_LOADED -107

SML_FRAME_CORRUPT -108

SML_WRONG_FRAME_TYPE -109

SML_WRONG_STATEMENT_TYPE -110

SML_CONS_OVERFLOW -111

SML_CRIT_OVERFLOW -112

SML_LOGFILE_ERROR -113

SML_INCONSISTENT -114

SML_DIFFERING_RANKS -115

SML_STMT_ERROR -116

SML_SYS_CORRUPT -117

SML_ALT_OVERFLOW -118

SML_NODE_OVERFLOW -119

SML_CRIT_MISSING -120

SML_TOO_FEW_ALTS -121

SML_USER_ABORT -122

SML_STATE_ERROR -123

SML_CRIT_UNKNOWN -124

SML_CRIT_EXISTS -125

SML_ALT_UNKNOWN -126

SML_ALT_MISMATCH -127

SML_BUSY -128

SML_NAME_MISSING -129

SML_NAME_TOO_LONG -130

SML_NAME_EXISTS -131

SML_NOT_ALLOWED -132

SML_WRONG_METHOD -133

SML_WRONG_TOLERANCE -134

SML_FILE_UNKNOWN -135

SML_INTERNAL_ERROR -137

SML_WEAK_MASS_DISTR -138

SML_MEMORY_LEAK -139

SML_BUFFER_OVERRUN -140

SML_ASSERT_FAILED -141

TCL error codes

In the event of a SML_KERNEL_ERROR, a problem with the request has been

detected in the underlying TCL calculation kernel. TCL reports the error to

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 33 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

SML as a positive number not to interfere with SML error numbers. SML records

the error and it is passed on to the SML caller as one numerical component in

SML_KERNEL_ERROR. The possible codes are:

TCL_INCONSISTENT

The call results in a previously consistent frame becoming inconsistent. The

call has been rolled back, and the frame is in the same state as it was

before the call.

TCL_INPUT_ERROR

An input parameter contains illegal data, for example, an index out of range

or values not within given intervals.

TCL_TREE_ERROR

The structure of the specified input tree is not a valid tree according to

the syntactic requirements.

TCL_ILLEGAL_NODE

An attempt to assign a value to an intermediate node in a tree.

(Probabilities and weights are allowed but not values)

TCL_TOO_FEW_ALTS

The call contains too few alternatives. This should be prohibited in the user

interface at an earlier point.

TCL_TOO_MANY_ALTS

The call contains too many alternatives. This should be prohibited in the

user interface at an earlier point.

TCL_TOO_MANY_CONS

The call contains too many consequences. This should be prohibited in the

user interface at an earlier point.

TCL_TOO_MANY_STMTS

The call contains too many statements. This should be prohibited in the user

interface at an earlier point.

TCL_TOO_NARROW_STMT

The TCL layer could operate in a mode where, for reasons of speed and

stability, intervals of very small size are not allowed. This excludes the

use of pointwise statements.

TCL_ATTACHED

An attempt to delete a frame that is currently attached (loaded).

TCL_DETACHED

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 34 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

An attempt to access a frame that is currently detached (unloaded).

TCL_CORRUPTED

The frame or other system resources have been rendered corrupt, either by

modifications outside of TCL or because of an internal error in TCL.

TCL_OUT_OF_MEMORY

The kernel has run out of memory. This is the result of allocating too little

virtual memory to the application in which the TCL layer is hosted.

TCL_MEMORY_LEAK

Memory not recycled at garbage collection.

TCL error numbers

TCL_INCONSISTENT 1

TCL_INPUT_ERROR 2

TCL_TREE_ERROR 3

TCL_ILLEGAL_NODE 4

TCL_TOO_MANY_CONS 5

TCL_TOO_MANY_ALTS 6

TCL_TOO_MANY_STMTS 7

TCL_TOO_NARROW_STMT 8

TCL_TOO_FEW_ALTS 9

TCL_CORRUPTED 10

TCL_ATTACHED 11

TCL_DETACHED 12

TCL_OUT_OF_MEMORY 13

TCL_MEMORY_LEAK 14

Mapping of SML return codes

This is the mapping of SML return codes to the error interpretation done by

SML_error2 and thus indirectly by all error checks above.

SML return codes Interpretation SML_error2 value*

SML_OK

Output result valid 0 SML_DIFFERING_RANKS

SML_WEAK_MASS_DISTR

SML_USER_ABORT Output result invalid 1

All other return codes Error occurred 2

TCL return codes

TCL_TOO_MANY_STMTS
Output result invalid 1

TCL_TOO_MANY_CONS

All other return codes Error occurred 2

* NOTE: Only when the result value is 0 there exists a result from the call.

Thus, only after an evaluation call resulting in the value 0 is the result

cache filled and subsequent output calls such as belief mass will succeed.

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 35 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

Call sequence trace (log file)

SML contains the ability to create a log file (the call sequence trace log,

cst_log). This log file contains all the API calls to SML and enables the

possibility to trace how an application works from the outside. It can be

configured to log only the calls or alternatively also the results of the

calls. It is enabled by storing a file “call_seq.log” in the home directory

of the application calling SML. The first line of text in the file controls

the trace level and is shown in parenthesis below. Running under MS Windows,

the text must be encoded in ANSI (not UTF-8).

 Level 0 (no file or no text): no log file written

 Level 1 (“call_seq.log”): input data + execution status

 Level 2 (“call_seq_ext.log”): level 1 + output data

For level 2, replacing the first line with “call_seq_exx.log” also turns the

error trace on. Similarly, “call_seq_exy.log” turns the error trace on but

not the call sequence trace.

API function acronyms

All API functions that alter the contents in SML or ask for an evaluation of

the contents have an acronym that will show up in the cst_log file (if it is

enabled) in case of runtime error or single thread violation, or in the

system trace file (if cst_log is not enabled).

 System functions

INIT SML_init

EXIT SML_exit

 File functions

FREAD SML_read_frame

FRDDT SML_read_ddt_frame

FWRT SML_write_frame

 Frame functions

PMF SML_new_DM_flat_frame

PMT SML_new_DM_tree_frame

PMT SML_new_SM_tree_frame

PMF SML_new_PM_flat_frame

PMT SML_new_PM_tree_frame

PMCT SML_new_PM_crit_tree

DPMC SML_delete_PM_crit

DISP SML_dispose_frame

LOAD SML_load_frame

UNL SML_unload_frame

 Weight functions

SWB SML_set_W_base

GWH SML_get_W_hull

 Probability functions

SPB SML_set_P_base

GPH SML_get_P_hull

 Value functions

SVM SML_set_V_base

GVH SML_get_V_hull

 Evaluation functions

EVAL SML_evaluate_frame

UNEDA SML API Specification - Version 7.21

Copyright 2021-2025 Mats Danielson Page 36 of 36

File UNEDA-SML 7.21.docx Last saved by mad 2025-06-06 12:00

OMEGA SML_evaluate_omega

OMEGA1 SML_evaluate_omega1

COMP SML_compare_alternatives

DMASS SML_delta_mass

RANK SML_rank_alternatives

DAISY SML_daisy_chain

DAISY SML_pie_chart

TOW SML_get_W_tornado

TOP SML_get_P_tornado

TMCP SML_get_MCP_tornado

TOV SML_get_V_tornado

TMCV SML_get_MCV_tornado

BTP SML_get_BTP_tornado

BTV SML_get_BTV_tornado

CINF SML_get_cons_influence

 Belief mass functions

AMASS SML_get_mass_above

BMASS SML_get_mass_below

RMASS SML_get_mass_range

SMASS SML_get_support_mass

SMASL SML_get_support_lower

SMASU SML_get_support_upper

